Analysis of Nearly One Thousand Mammalian Mirtrons Reveals Novel Features of Dicer Substrates
نویسندگان
چکیده
Mirtrons are microRNA (miRNA) substrates that utilize the splicing machinery to bypass the necessity of Drosha cleavage for their biogenesis. Expanding our recent efforts for mammalian mirtron annotation, we use meta-analysis of aggregate datasets to identify ~500 novel mouse and human introns that confidently generate diced small RNA duplexes. These comprise nearly 1000 total loci distributed in four splicing-mediated biogenesis subclasses, with 5'-tailed mirtrons as, by far, the dominant subtype. Thus, mirtrons surprisingly comprise a substantial fraction of endogenous Dicer substrates in mammalian genomes. Although mirtron-derived small RNAs exhibit overall expression correlation with their host mRNAs, we observe a subset with substantial differences that suggest regulated processing or accumulation. We identify characteristic sequence, length, and structural features of mirtron loci that distinguish them from bulk introns, and find that mirtrons preferentially emerge from genes with larger numbers of introns. While mirtrons generate miRNA-class regulatory RNAs, we also find that mirtrons exhibit many features that distinguish them from canonical miRNAs. We observe that conventional mirtron hairpins are substantially longer than Drosha-generated pre-miRNAs, indicating that the characteristic length of canonical pre-miRNAs is not a general feature of Dicer substrate hairpins. In addition, mammalian mirtrons exhibit unique patterns of ordered 5' and 3' heterogeneity, which reveal hidden complexity in miRNA processing pathways. These include broad 3'-uridylation of mirtron hairpins, atypically heterogeneous 5' termini that may result from exonucleolytic processing, and occasionally robust decapitation of the 5' guanine (G) of mirtron-5p species defined by splicing. Altogether, this study reveals that this extensive class of non-canonical miRNA bears a multitude of characteristic properties, many of which raise general mechanistic questions regarding the processing of endogenous hairpin transcripts.
منابع مشابه
Biogenesis of mammalian microRNAs by a non-canonical processing pathway
Canonical microRNA biogenesis requires the Microprocessor components, Drosha and DGCR8, to generate precursor-miRNA, and Dicer to form mature miRNA. The Microprocessor is not required for processing of some miRNAs, including mirtrons, in which spliceosome-excised introns are direct Dicer substrates. In this study, we examine the processing of putative human mirtrons and demonstrate that althoug...
متن کاملArgonaute-associated short introns are a novel class of gene regulators
MicroRNAs (miRNAs) are short (∼22 nucleotides) regulators of gene expression acting by direct base pairing to 3'-UTR target sites in messenger RNAs. Mature miRNAs are produced by two sequential endonucleolytic cleavages facilitated by Drosha in the nucleus and Dicer in the cytoplasm. A subclass of miRNAs, termed mirtrons, derives from short introns and enters the miRNA biogenesis pathway as Dic...
متن کاملMirtrons: microRNA biogenesis via splicing.
A well-defined mechanism governs the maturation of most microRNAs (miRNAs) in animals, via stepwise cleavage of precursor hairpin transcripts by the Drosha and Dicer RNase III enzymes. Recently, several alternative miRNA biogenesis pathways were elucidated, the most prominent of which substitutes Drosha cleavage with splicing. Such short hairpin introns are known as mirtrons, and their study ha...
متن کاملMammalian mirtron genes.
Mirtrons are alternative precursors for microRNA biogenesis that were recently described in invertebrates. These short hairpin introns use splicing to bypass Drosha cleavage, which is otherwise essential for the generation of canonical animal microRNAs. Using computational and experimental strategies, we now establish that mammals have mirtrons as well. We identified 3 mirtrons that are well co...
متن کاملCanonical and alternate functions of the microRNA biogenesis machinery.
The canonical microRNA (miRNA) biogenesis pathway requires two RNaseIII enzymes: Drosha and Dicer. To understand their functions in mammals in vivo, we engineered mice with germline or tissue-specific inactivation of the genes encoding these two proteins. Changes in proteomic and transcriptional profiles that were shared in Dicer- and Drosha-deficient mice confirmed the requirement for both enz...
متن کامل